
CS166 Handout 05
Spring 2016 March 31, 2014

Problem Set 1: Range Minimum Queries

Here it is – the first assignment of the quarter! This set of problems focuses on range minimum
queries. In the course of working through it, you'll fill in some gaps from lecture and will get to see
how to generalize these techniques to other settings. Plus, you'll get the chance to implement the
techniques from lecture, which will help solidify your understanding.

Before reading over this problem set, please be sure to read over Handout #03 detailing our problem
set policies and Handout #04 describing our policies on the Honor Code.

Due Thursday, April 7 at the start of lecture.

Problem One: Sparse Tables with O(1) Queries (1 Point)
To compute RMQA(i, j) with a sparse table in time O(1), it's necessary to compute in time O(1) the
largest k for which 2k ≤ j – i + 1. Explain how to modify the preprocessing step of the sparse table by
adding O(n) additional work such that you can answer these queries in time O(1). Feel free to introduce
as much additional memory as you think would be necessary.

You can assume that any basic operation on a machine word (addition, multiplication, bitwise AND, bit-
shifts, etc.) takes time O(1) and that the size of the array fits into a machine word. However, you should
not assume that complex mathematical functions like logarithms or radicals can be evaluated in time
O(1). Additionally, the runtime of your operations should not directly depend on the size of a machine
word, and you should not assume that the word size is necessarily 32 or 64 bits.

Problem Two: Area Minimum Queries (3 Points)
In what follows, if A is a 2D array, we'll denote by A[i, j] the entry at row i, column j, zero-indexed.

This problem concerns a two-dimensional variant of RMQ called the area minimum query problem, or
AMQ. In AMQ, you are given a fixed, two-dimensional array of values and will have some amount of
time to preprocess that array. You'll then be asked to answer queries of the form “what is the smallest
number contained in the rectangular region with upper-left corner (i, j) and lower-right corner (k, l)?”
Mathematically, we'll define AMQA((i, j), (k, l)) to be min i ≤ s ≤ k, j ≤ t ≤ l A[s, t]. For example, consider the
following array:

31 41 59 26 53 58 97

93 23 84 64 33 83 27

95 2 88 41 97 16 93

99 37 51 5 82 9 74

94 45 92 30 78 16 40

62 86 20 89 98 62 80
Here, A[0, 0] is the upper-left corner, and A[5, 6] is the lower-right corner. In this setting:

• AMQA((0, 0), (5, 6)) = 2

• AMQA((0, 0), (0, 6)) = 26

• AMQA((2, 2), (3, 3)) = 5

For the purposes of this problem, let m denote the number of rows in A and n the number of columns.

i. Design and describe an ⟨O(mn), O(min{m, n})⟩-time data structure for AMQ.

ii. Design and describe an ⟨O(mn log m log n), O(1)⟩-time data structure for AMQ.

Problem Three: Hybrid RMQ Structures (2 Points)
For any k ≥ 0, let's define the function log(k) n to be the function

log log log … log n (k times)

For example:

log(0) n = n log(1) n = log n log(2) n = log log n log(3) n = log log log n

i. Using the hybrid framework, show that that for any fixed k ≥ 1, there is an RMQ data structure
with time complexity ⟨O(n log(k) n), O(1)⟩. For notational simplicity, we'll refer to the kth of these
structures as Dₖ.

ii. Although every D ₖ data structure has query time O(1), the query times on the D ₖ structures will
increase as k increases. Explain why this is the case and why this doesn't contradict your result
from part (i).

(The rest of this page is just for fun.)

The iterated logarithm function, denoted log* n, is defined as follows:

log* n is the smallest value of k for which log(k) n ≤ 1

Intuitively, log* n measures the number of times that you have to take the logarithm of n before n drops
to one. For example:

log* 1 = 0 log* 2 = 1 log* 4 = 2 log* 16 = 3 log* 65,536 = 4 log* 265,536 = 5

This function grows extremely slowly. For reference, the number of atoms in the universe is estimated to
be about 1080 ≈ 2240, and from the values above you can see that log* 1080 is 5.

For arrays of length n, the data structure Dlog* n is an ⟨O(n log* n), O(log* n)⟩ solution to RMQ. That's
crazily fast!

Problem Four: Implementing RMQ Structures (4 Points)
In this problem, you'll implement several RMQ structures in Java. In doing so, we hope that you'll get a
better feeling for some of the complexities involved in translating data structures into code.

For the purposes of this problem, your structures should answer range minimum queries by returning in-
dex at which the minimum value in the range resides, rather than the value at that index. If there are mul -
tiple values tied for the smallest, you can return any one of them.

The data structures you'll be implementing will answer RMQ over arrays of floats. We've chosen arrays
of floats because ints (representing indices) and floats (representing values) aren't implicitly convert-
ible to one another in Java. In other words, if you try to assign an index to a value or vice-versa, you'll get
a compiler error rather than a runtime error.

We've provided Java starter files at /usr/class/cs166/assignments/ps1 and a Makefile that will build
the project. The classes you need to implement are in the rmq directory. To run our driver program on a
particular data structure, you can run

java -ea RMQDriver your-rmq-structure random-seedopt

Here, your-rmq-structure is the name of the class containing your RMQ structure. Since your RMQ
structures will be in the rmq directory, you'll need to prefix the name of the class to test with rmq.. For
example, you could run your sparse table code by running

java -ea RMQDriver rmq.SparseTableRMQ

The random-seedopt parameter (a long) is optional and is used to force a specific random number seed
when running the program. You might find this helpful during testing to guarantee that each run of the
program tests your RMQ structure on identical inputs.

i. Implement the ⟨O(n2), O(1)⟩ RMQ data structure that precomputes the answers to all possible
range minimum queries. This is mostly a warmup to make sure you're able to get our test harness
running and your code compiling.

ii. Implement a sparse table RMQ data structure. Make sure that your data structure can answer
queries in time O(1); to do so, we recommend implementing the data structure you designed in
Problem One.

iii. Implement the ⟨O(n), O(log n)⟩ hybrid structure we described in the first lecture, which combines
a sparse table with the ⟨O(1), O(n)⟩ linear-scan solution.

iv. Implement the Fischer-Heun data structure. You're welcome to implement either the slightly sim-
plified version of the Fischer-Heun structure described in lecture (which uses Cartesian tree num-
bers and is a bit simpler to implement) or the version of Fischer-Heun from the original paper
(which uses ballot numbers and is a bit trickier). You may want to base your code for this part on
the code you wrote in part (iii).

If you need a Java refresher, the CS108 course website (http://cs108.stanford.edu) has many useful hand-
outs about the Java language. Handouts #02 and #03 might be particularly useful. If you'd like some extra
resources beyond that, please feel free to contact the course staff!

http://cs108.stanford.edu/

